Nuprl Lemma : implies-rel_plus

[T:Type]. ∀[R:T ⟶ T ⟶ Type]. ∀[x:T].  ∀y:T. ((R y)  (R+ y))


Proof




Definitions occuring in Statement :  rel_plus: R+ uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rel_plus: R+ uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: false: False infix_ap: y iff: ⇐⇒ Q rev_implies:  Q and: P ∧ Q nat: subtype_rel: A ⊆B
Lemmas referenced :  decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than rel_exp1 rel_exp_wf nat_plus_properties decidable__le intformand_wf intformle_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_var_lemma istype-le subtype_rel_self istype-universe
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  Error :dependent_pairFormation_alt,  Error :dependent_set_memberEquality_alt,  natural_numberEquality cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesis unionElimination isectElimination independent_isectElimination approximateComputation independent_functionElimination Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  hypothesisEquality productElimination applyEquality setElimination rename int_eqEquality independent_pairFormation functionExtensionality instantiate functionEquality cumulativity universeEquality because_Cache Error :inhabitedIsType,  Error :functionIsType

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  Type].  \mforall{}[x:T].    \mforall{}y:T.  ((R  x  y)  {}\mRightarrow{}  (R\msupplus{}  x  y))



Date html generated: 2019_06_20-PM-02_01_44
Last ObjectModification: 2019_02_26-AM-11_55_50

Theory : relations2


Home Index