Nuprl Lemma : implies-rel_plus
∀[T:Type]. ∀[R:T ⟶ T ⟶ Type]. ∀[x:T].  ∀y:T. ((R x y) 
⇒ (R+ x y))
Proof
Definitions occuring in Statement : 
rel_plus: R+
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
rel_plus: R+
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
prop: ℙ
, 
false: False
, 
infix_ap: x f y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
rel_exp1, 
rel_exp_wf, 
nat_plus_properties, 
decidable__le, 
intformand_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
istype-le, 
subtype_rel_self, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
Error :dependent_pairFormation_alt, 
Error :dependent_set_memberEquality_alt, 
natural_numberEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesis, 
unionElimination, 
isectElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :lambdaEquality_alt, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :universeIsType, 
hypothesisEquality, 
productElimination, 
applyEquality, 
setElimination, 
rename, 
int_eqEquality, 
independent_pairFormation, 
functionExtensionality, 
instantiate, 
functionEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
Error :inhabitedIsType, 
Error :functionIsType
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  Type].  \mforall{}[x:T].    \mforall{}y:T.  ((R  x  y)  {}\mRightarrow{}  (R\msupplus{}  x  y))
Date html generated:
2019_06_20-PM-02_01_44
Last ObjectModification:
2019_02_26-AM-11_55_50
Theory : relations2
Home
Index