Nuprl Lemma : rel_exp1

[T:Type]. ∀[R:T ⟶ T ⟶ Type]. ∀[x:T].  ∀y:T. (R^1 ⇐⇒ y)


Proof




Definitions occuring in Statement :  rel_exp: R^n uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  rel_exp: R^n eq_int: (i =z j) subtract: m ifthenelse: if then else fi  bfalse: ff btrue: tt infix_ap: y uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T rev_implies:  Q cand: c∧ B guard: {T} prop: subtype_rel: A ⊆B
Lemmas referenced :  istype-universe subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  independent_pairFormation sqequalHypSubstitution productElimination thin Error :productIsType,  Error :inhabitedIsType,  hypothesisEquality Error :universeIsType,  applyEquality Error :equalityIstype,  hypothesis Error :dependent_pairFormation_alt,  cut because_Cache Error :functionIsType,  instantiate introduction extract_by_obid isectElimination universeEquality hyp_replacement equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  Type].  \mforall{}[x:T].    \mforall{}y:T.  (rel\_exp(T;  R;  1)  x  y  \mLeftarrow{}{}\mRightarrow{}  R  x  y)



Date html generated: 2019_06_20-PM-00_30_23
Last ObjectModification: 2019_02_26-AM-11_54_11

Theory : relations


Home Index