Nuprl Lemma : inl-one-one

[A,B:Type]. ∀[x,y:A].  uiff((inl x) (inl y) ∈ (A B);x y ∈ A)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] inl: inl x union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  prop: uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  equal_wf
Rules used in proof :  universeEquality equalitySymmetry equalityTransitivity axiomEquality isect_memberEquality independent_pairEquality productElimination because_Cache inlEquality cumulativity unionEquality isectElimination extract_by_obid hypothesis hypothesisEquality thin unionElimination applyLambdaEquality sqequalRule sqequalHypSubstitution independent_pairFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A,B:Type].  \mforall{}[x,y:A].    uiff((inl  x)  =  (inl  y);x  =  y)



Date html generated: 2018_05_21-PM-00_00_52
Last ObjectModification: 2017_12_11-PM-06_47_06

Theory : union


Home Index