Nuprl Lemma : inl-one-one
∀[A,B:Type]. ∀[x,y:A].  uiff((inl x) = (inl y) ∈ (A + B);x = y ∈ A)
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
inl: inl x
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
prop: ℙ
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
equal_wf
Rules used in proof : 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
isect_memberEquality, 
independent_pairEquality, 
productElimination, 
because_Cache, 
inlEquality, 
cumulativity, 
unionEquality, 
isectElimination, 
extract_by_obid, 
hypothesis, 
hypothesisEquality, 
thin, 
unionElimination, 
applyLambdaEquality, 
sqequalRule, 
sqequalHypSubstitution, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A,B:Type].  \mforall{}[x,y:A].    uiff((inl  x)  =  (inl  y);x  =  y)
Date html generated:
2018_05_21-PM-00_00_52
Last ObjectModification:
2017_12_11-PM-06_47_06
Theory : union
Home
Index