Nuprl Lemma : dl-prop-sem_wf

[K:Type]. ∀[R:ℕ ⟶ K ⟶ K ⟶ ℙ]. ∀[P:ℕ ⟶ K ⟶ ℙ]. ∀[phi:Prop].  ([|phi|] ∈ K ⟶ ℙ)


Proof




Definitions occuring in Statement :  dl-prop-sem: [|phi|] dl-prop: Prop nat: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dl-prop-sem: [|phi|] ifthenelse: if then else fi  eq_atom: =a y dl-kind: dl-kind(d) mobj-kind: mobj-kind(x) pi1: fst(t) dl-prop-obj: prop(x) bfalse: ff so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] prop:
Lemmas referenced :  dl-sem_wf istype-nat dl-prop-obj_wf dl-prop_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule applyEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality_alt hypothesis dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType functionIsType universeEquality because_Cache instantiate

Latex:
\mforall{}[K:Type].  \mforall{}[R:\mBbbN{}  {}\mrightarrow{}  K  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:\mBbbN{}  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[phi:Prop].    ([|phi|]  \mmember{}  K  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2019_10_15-AM-11_43_44
Last ObjectModification: 2019_03_26-AM-11_44_34

Theory : dynamic!logic


Home Index