Nuprl Lemma : dl-prop-sem_wf
∀[K:Type]. ∀[R:ℕ ⟶ K ⟶ K ⟶ ℙ]. ∀[P:ℕ ⟶ K ⟶ ℙ]. ∀[phi:Prop].  ([|phi|] ∈ K ⟶ ℙ)
Proof
Definitions occuring in Statement : 
dl-prop-sem: [|phi|]
, 
dl-prop: Prop
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dl-prop-sem: [|phi|]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
dl-kind: dl-kind(d)
, 
mobj-kind: mobj-kind(x)
, 
pi1: fst(t)
, 
dl-prop-obj: prop(x)
, 
bfalse: ff
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
dl-sem_wf, 
istype-nat, 
dl-prop-obj_wf, 
dl-prop_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality_alt, 
hypothesis, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
universeEquality, 
because_Cache, 
instantiate
Latex:
\mforall{}[K:Type].  \mforall{}[R:\mBbbN{}  {}\mrightarrow{}  K  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:\mBbbN{}  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[phi:Prop].    ([|phi|]  \mmember{}  K  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2019_10_15-AM-11_43_44
Last ObjectModification:
2019_03_26-AM-11_44_34
Theory : dynamic!logic
Home
Index