Nuprl Lemma : dl-sem_wf
∀[K:Type]. ∀[R:ℕ ⟶ K ⟶ K ⟶ ℙ]. ∀[P:ℕ ⟶ K ⟶ ℙ].
(dl-sem(K;n.R[n];m.P[m]) ∈ d:dl-Obj() ⟶ if dl-kind(d) =a "prog" then K ⟶ K ⟶ ℙ else K ⟶ ℙ fi )
Proof
Definitions occuring in Statement :
dl-sem: dl-sem(K;n.R[n];m.P[m])
,
dl-kind: dl-kind(d)
,
dl-Obj: dl-Obj()
,
nat: ℕ
,
ifthenelse: if b then t else f fi
,
eq_atom: x =a y
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
token: "$token"
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
dl-sem: dl-sem(K;n.R[n];m.P[m])
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
,
exists: ∃x:A. B[x]
,
and: P ∧ Q
,
so_apply: x[s1;s2;s3;s4]
,
or: P ∨ Q
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
Lemmas referenced :
dl-ind_wf_definition,
subtype-TYPE,
istype-nat,
subtype_rel_self,
dl-prog_wf,
rel_star_wf,
equal_wf,
dl-prop_wf,
false_wf,
istype-universe
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
functionEquality,
cumulativity,
hypothesisEquality,
universeEquality,
hypothesis,
applyEquality,
instantiate,
because_Cache,
lambdaEquality_alt,
productEquality,
inhabitedIsType,
universeIsType,
functionIsType,
unionEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality_alt,
isectIsTypeImplies
Latex:
\mforall{}[K:Type]. \mforall{}[R:\mBbbN{} {}\mrightarrow{} K {}\mrightarrow{} K {}\mrightarrow{} \mBbbP{}]. \mforall{}[P:\mBbbN{} {}\mrightarrow{} K {}\mrightarrow{} \mBbbP{}].
(dl-sem(K;n.R[n];m.P[m]) \mmember{} d:dl-Obj() {}\mrightarrow{} if dl-kind(d) =a "prog" then K {}\mrightarrow{} K {}\mrightarrow{} \mBbbP{} else K {}\mrightarrow{} \mBbbP{} fi )
Date html generated:
2019_10_15-AM-11_43_33
Last ObjectModification:
2019_03_26-AM-11_31_49
Theory : dynamic!logic
Home
Index