Nuprl Lemma : dl-sem_wf
∀[K:Type]. ∀[R:ℕ ⟶ K ⟶ K ⟶ ℙ]. ∀[P:ℕ ⟶ K ⟶ ℙ].
  (dl-sem(K;n.R[n];m.P[m]) ∈ d:dl-Obj() ⟶ if dl-kind(d) =a "prog" then K ⟶ K ⟶ ℙ else K ⟶ ℙ fi )
Proof
Definitions occuring in Statement : 
dl-sem: dl-sem(K;n.R[n];m.P[m])
, 
dl-kind: dl-kind(d)
, 
dl-Obj: dl-Obj()
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
token: "$token"
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dl-sem: dl-sem(K;n.R[n];m.P[m])
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
so_apply: x[s1;s2;s3;s4]
, 
or: P ∨ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
dl-ind_wf_definition, 
subtype-TYPE, 
istype-nat, 
subtype_rel_self, 
dl-prog_wf, 
rel_star_wf, 
equal_wf, 
dl-prop_wf, 
false_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
hypothesis, 
applyEquality, 
instantiate, 
because_Cache, 
lambdaEquality_alt, 
productEquality, 
inhabitedIsType, 
universeIsType, 
functionIsType, 
unionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[K:Type].  \mforall{}[R:\mBbbN{}  {}\mrightarrow{}  K  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:\mBbbN{}  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}].
    (dl-sem(K;n.R[n];m.P[m])  \mmember{}  d:dl-Obj()  {}\mrightarrow{}  if  dl-kind(d)  =a  "prog"  then  K  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}  else  K  {}\mrightarrow{}  \mBbbP{}  fi  )
Date html generated:
2019_10_15-AM-11_43_33
Last ObjectModification:
2019_03_26-AM-11_31_49
Theory : dynamic!logic
Home
Index