Nuprl Lemma : dl-sem_wf

[K:Type]. ∀[R:ℕ ⟶ K ⟶ K ⟶ ℙ]. ∀[P:ℕ ⟶ K ⟶ ℙ].
  (dl-sem(K;n.R[n];m.P[m]) ∈ d:dl-Obj() ⟶ if dl-kind(d) =a "prog" then K ⟶ K ⟶ ℙ else K ⟶ ℙ fi )


Proof




Definitions occuring in Statement :  dl-sem: dl-sem(K;n.R[n];m.P[m]) dl-kind: dl-kind(d) dl-Obj: dl-Obj() nat: ifthenelse: if then else fi  eq_atom: =a y uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] token: "$token" universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dl-sem: dl-sem(K;n.R[n];m.P[m]) prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) exists: x:A. B[x] and: P ∧ Q so_apply: x[s1;s2;s3;s4] or: P ∨ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q all: x:A. B[x]
Lemmas referenced :  dl-ind_wf_definition subtype-TYPE istype-nat subtype_rel_self dl-prog_wf rel_star_wf equal_wf dl-prop_wf false_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality cumulativity hypothesisEquality universeEquality hypothesis applyEquality instantiate because_Cache lambdaEquality_alt productEquality inhabitedIsType universeIsType functionIsType unionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[K:Type].  \mforall{}[R:\mBbbN{}  {}\mrightarrow{}  K  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:\mBbbN{}  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}].
    (dl-sem(K;n.R[n];m.P[m])  \mmember{}  d:dl-Obj()  {}\mrightarrow{}  if  dl-kind(d)  =a  "prog"  then  K  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}  else  K  {}\mrightarrow{}  \mBbbP{}  fi  )



Date html generated: 2019_10_15-AM-11_43_33
Last ObjectModification: 2019_03_26-AM-11_31_49

Theory : dynamic!logic


Home Index