Nuprl Lemma : rel_star_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (R^* ∈ T ⟶ T ⟶ ℙ)


Proof




Definitions occuring in Statement :  rel_star: R^* uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rel_star: R^* so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s] prop:
Lemmas referenced :  exists_wf nat_wf rel_exp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis applyEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  universeEquality isect_memberEquality functionEquality cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (rel\_star(T;  R)  \mmember{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_30_33
Last ObjectModification: 2018_09_26-PM-00_39_29

Theory : relations


Home Index