Nuprl Lemma : rel_star_wf
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (R^* ∈ T ⟶ T ⟶ ℙ)
Proof
Definitions occuring in Statement : 
rel_star: R^*
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rel_star: R^*
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
exists_wf, 
nat_wf, 
rel_exp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
Error :universeIsType, 
Error :inhabitedIsType, 
universeEquality, 
isect_memberEquality, 
functionEquality, 
cumulativity
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (rel\_star(T;  R)  \mmember{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2019_06_20-PM-00_30_33
Last ObjectModification:
2018_09_26-PM-00_39_29
Theory : relations
Home
Index