Nuprl Lemma : dl-same-sem_wf
∀[x:dl-Obj()]. ∀[K:Type]. ∀[r,s:if dl-kind(x) =a "prog" then K ⟶ K ⟶ ℙ else K ⟶ ℙ fi ].  (dl-same-sem(x;K;r;s) ∈ ℙ)
Proof
Definitions occuring in Statement : 
dl-same-sem: dl-same-sem(x;K;r;s)
, 
dl-kind: dl-kind(d)
, 
dl-Obj: dl-Obj()
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
token: "$token"
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dl-same-sem: dl-same-sem(x;K;r;s)
, 
prop: ℙ
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
equal-wf-base, 
all_wf, 
iff_wf, 
subtype_base_sq, 
atom_subtype_base, 
ifthenelse_wf, 
eq_atom_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
lambdaEquality_alt, 
instantiate, 
cumulativity, 
atomEquality, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
applyEquality, 
inhabitedIsType, 
universeIsType, 
baseClosed, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
setElimination, 
rename, 
tokenEquality, 
universeEquality
Latex:
\mforall{}[x:dl-Obj()].  \mforall{}[K:Type].  \mforall{}[r,s:if  dl-kind(x)  =a  "prog"  then  K  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}  else  K  {}\mrightarrow{}  \mBbbP{}  fi  ].
    (dl-same-sem(x;K;r;s)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_15-AM-11_43_38
Last ObjectModification:
2019_03_26-AM-11_28_14
Theory : dynamic!logic
Home
Index