Nuprl Lemma : rel_star_functionality_wrt_rel_implies
∀[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ].  (R1 => R2 
⇒ R1^* => R2^*)
Proof
Definitions occuring in Statement : 
rel_star: R^*
, 
rel_implies: R1 => R2
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
rel_implies: R1 => R2
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
rel_star_monotonic, 
rel_star_wf, 
subtype_rel_self, 
rel_implies_wf, 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
Error :universeIsType, 
applyEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
instantiate, 
universeEquality, 
because_Cache, 
Error :inhabitedIsType, 
Error :functionIsType, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R1,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (R1  =>  R2  {}\mRightarrow{}  rel\_star(T;  R1)  =>  rel\_star(T;  R2))
Date html generated:
2019_06_20-PM-02_02_22
Last ObjectModification:
2019_01_17-PM-10_04_01
Theory : relations2
Home
Index