Nuprl Lemma : rel_star_functionality_wrt_rel_implies

[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ].  (R1 => R2  R1^* => R2^*)


Proof




Definitions occuring in Statement :  rel_star: R^* rel_implies: R1 => R2 uall: [x:A]. B[x] prop: implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q rel_implies: R1 => R2 all: x:A. B[x] member: t ∈ T infix_ap: y subtype_rel: A ⊆B prop: guard: {T}
Lemmas referenced :  rel_star_monotonic rel_star_wf subtype_rel_self rel_implies_wf istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  Error :universeIsType,  applyEquality sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule instantiate universeEquality because_Cache Error :inhabitedIsType,  Error :functionIsType,  dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R1,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (R1  =>  R2  {}\mRightarrow{}  rel\_star(T;  R1)  =>  rel\_star(T;  R2))



Date html generated: 2019_06_20-PM-02_02_22
Last ObjectModification: 2019_01_17-PM-10_04_01

Theory : relations2


Home Index