Nuprl Lemma : rel_star_monotonic

[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ].  ∀x,y:T.  (R1 => R2  (x (R1^*) y)  (x (R2^*) y))


Proof




Definitions occuring in Statement :  rel_star: R^* rel_implies: R1 => R2 uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T rel_implies: R1 => R2 prop: infix_ap: y
Lemmas referenced :  rel_star_monotone rel_star_wf rel_implies_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality independent_functionElimination hypothesis dependent_functionElimination applyEquality Error :inhabitedIsType,  Error :functionIsType,  Error :universeIsType,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R1,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}x,y:T.    (R1  =>  R2  {}\mRightarrow{}  (x  (R1\^{}*)  y)  {}\mRightarrow{}  (x  (R2\^{}*)  y))



Date html generated: 2019_06_20-PM-00_30_41
Last ObjectModification: 2018_09_26-PM-00_48_04

Theory : relations


Home Index