Nuprl Lemma : rel_star_monotone
∀[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ]. (R1 => R2
⇒ R1^* => R2^*)
Proof
Definitions occuring in Statement :
rel_star: R^*
,
rel_implies: R1 => R2
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
rel_star: R^*
,
rel_implies: R1 => R2
,
infix_ap: x f y
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
rel_exp_wf,
exists_wf,
nat_wf,
all_wf,
rel_exp_monotone
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
Error :isect_memberFormation_alt,
lambdaFormation,
sqequalHypSubstitution,
productElimination,
thin,
dependent_pairFormation,
hypothesisEquality,
cut,
dependent_functionElimination,
hypothesis,
independent_functionElimination,
applyEquality,
introduction,
extract_by_obid,
isectElimination,
lambdaEquality,
functionEquality,
Error :inhabitedIsType,
Error :functionIsType,
Error :universeIsType,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[R1,R2:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. (R1 => R2 {}\mRightarrow{} rel\_star(T; R1) => rel\_star(T; R2))
Date html generated:
2019_06_20-PM-00_30_34
Last ObjectModification:
2018_09_26-PM-00_49_26
Theory : relations
Home
Index