Step
*
of Lemma
cocons_wf
∀[A:Type]. ∀[a:A]. ∀[L:co-list-islist(A)]. (cocons(a;L) ∈ co-list-islist(A))
BY
{ ((InstLemma `colist-ext` []⋅ THEN ParallelLast')
THEN (Auto THEN DVar `L')
THEN Unfolds ``cocons co-list-islist`` 0
THEN At Type MemTypeCD⋅
THEN Try (BLemma `has-value-is-list-of-co-list`)
THEN Auto
THEN SubsumeC ⌜Unit ⋃ (A × colist(A))⌝⋅
THEN Auto) }
Latex:
Latex:
\mforall{}[A:Type]. \mforall{}[a:A]. \mforall{}[L:co-list-islist(A)]. (cocons(a;L) \mmember{} co-list-islist(A))
By
Latex:
((InstLemma `colist-ext` []\mcdot{} THEN ParallelLast')
THEN (Auto THEN DVar `L')
THEN Unfolds ``cocons co-list-islist`` 0
THEN At Type MemTypeCD\mcdot{}
THEN Try (BLemma `has-value-is-list-of-co-list`)
THEN Auto
THEN SubsumeC \mkleeneopen{}Unit \mcup{} (A \mtimes{} colist(A))\mkleeneclose{}\mcdot{}
THEN Auto)
Home
Index