Nuprl Lemma : cocons_wf
∀[A:Type]. ∀[a:A]. ∀[L:co-list-islist(A)].  (cocons(a;L) ∈ co-list-islist(A))
Proof
Definitions occuring in Statement : 
cocons: cocons(a;L)
, 
co-list-islist: co-list-islist(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
co-list-islist: co-list-islist(T)
, 
cocons: cocons(a;L)
, 
subtype_rel: A ⊆r B
, 
is-list: is-list(t)
, 
pi2: snd(t)
, 
uimplies: b supposing a
, 
bool: 𝔹
, 
prop: ℙ
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
Lemmas referenced : 
colist-ext, 
subtype_rel_b-union-right, 
unit_wf2, 
colist_wf, 
istype-universe, 
has-value_wf-partial, 
bool_wf, 
union-value-type, 
is-list_wf, 
co-list-islist_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
independent_pairEquality, 
applyEquality, 
productEquality, 
sqequalRule, 
independent_isectElimination, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality, 
productElimination
Latex:
\mforall{}[A:Type].  \mforall{}[a:A].  \mforall{}[L:co-list-islist(A)].    (cocons(a;L)  \mmember{}  co-list-islist(A))
Date html generated:
2019_10_16-AM-11_38_50
Last ObjectModification:
2019_06_26-PM-04_07_01
Theory : eval!all
Home
Index