Nuprl Lemma : cocons_wf

[A:Type]. ∀[a:A]. ∀[L:co-list-islist(A)].  (cocons(a;L) ∈ co-list-islist(A))


Proof




Definitions occuring in Statement :  cocons: cocons(a;L) co-list-islist: co-list-islist(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T co-list-islist: co-list-islist(T) cocons: cocons(a;L) subtype_rel: A ⊆B is-list: is-list(t) pi2: snd(t) uimplies: supposing a bool: 𝔹 prop: ext-eq: A ≡ B and: P ∧ Q
Lemmas referenced :  colist-ext subtype_rel_b-union-right unit_wf2 colist_wf istype-universe has-value_wf-partial bool_wf union-value-type is-list_wf co-list-islist_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename dependent_set_memberEquality_alt independent_pairEquality applyEquality productEquality sqequalRule independent_isectElimination because_Cache axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate universeEquality productElimination

Latex:
\mforall{}[A:Type].  \mforall{}[a:A].  \mforall{}[L:co-list-islist(A)].    (cocons(a;L)  \mmember{}  co-list-islist(A))



Date html generated: 2019_10_16-AM-11_38_50
Last ObjectModification: 2019_06_26-PM-04_07_01

Theory : eval!all


Home Index