Nuprl Lemma : co-list-islist_wf
∀[T:Type]. (co-list-islist(T) ∈ Type)
Proof
Definitions occuring in Statement : 
co-list-islist: co-list-islist(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
co-list-islist: co-list-islist(T)
, 
uimplies: b supposing a
, 
bool: 𝔹
, 
prop: ℙ
Lemmas referenced : 
colist_wf, 
has-value_wf-partial, 
bool_wf, 
union-value-type, 
unit_wf2, 
is-list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
cumulativity, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  (co-list-islist(T)  \mmember{}  Type)
Date html generated:
2016_05_15-PM-10_10_19
Last ObjectModification:
2015_12_27-PM-05_58_53
Theory : eval!all
Home
Index