Nuprl Lemma : co-list-islist_wf

[T:Type]. (co-list-islist(T) ∈ Type)


Proof




Definitions occuring in Statement :  co-list-islist: co-list-islist(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T co-list-islist: co-list-islist(T) uimplies: supposing a bool: 𝔹 prop:
Lemmas referenced :  colist_wf has-value_wf-partial bool_wf union-value-type unit_wf2 is-list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination sqequalRule because_Cache cumulativity axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (co-list-islist(T)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-10_10_19
Last ObjectModification: 2015_12_27-PM-05_58_53

Theory : eval!all


Home Index