Nuprl Lemma : is-list_wf
∀[T:Type]. ∀[t:colist(T)].  (is-list(t) ∈ partial(𝔹))
Proof
Definitions occuring in Statement : 
is-list: is-list(t)
, 
colist: colist(T)
, 
partial: partial(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
colist: colist(T)
, 
is-list: is-list(t)
, 
uimplies: b supposing a
, 
bool: 𝔹
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
has-value: (a)↓
, 
unit: Unit
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
ifthenelse: if b then t else f fi 
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
fix_wf_corec-partial1, 
bool_wf, 
union-value-type, 
unit_wf2, 
bool-mono, 
b-union_wf, 
list-functor, 
value-type-has-value, 
bunion-value-type, 
equal-value-type, 
product-value-type, 
btrue_wf, 
inclusion-partial, 
partial_wf, 
colist_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
lambdaEquality, 
productEquality, 
hypothesisEquality, 
universeEquality, 
isect_memberEquality, 
callbyvalueReduce, 
intEquality, 
natural_numberEquality, 
imageElimination, 
productElimination, 
unionElimination, 
equalityElimination, 
applyEquality, 
cumulativity, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].    (is-list(t)  \mmember{}  partial(\mBbbB{}))
Date html generated:
2016_05_15-PM-10_07_29
Last ObjectModification:
2015_12_27-PM-06_00_56
Theory : eval!all
Home
Index