Nuprl Lemma : is-list_wf

[T:Type]. ∀[t:colist(T)].  (is-list(t) ∈ partial(𝔹))


Proof




Definitions occuring in Statement :  is-list: is-list(t) colist: colist(T) partial: partial(T) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T colist: colist(T) is-list: is-list(t) uimplies: supposing a bool: 𝔹 so_lambda: λ2x.t[x] so_apply: x[s] has-value: (a)↓ unit: Unit b-union: A ⋃ B tunion: x:A.B[x] ifthenelse: if then else fi  pi2: snd(t) subtype_rel: A ⊆B
Lemmas referenced :  fix_wf_corec-partial1 bool_wf union-value-type unit_wf2 bool-mono b-union_wf list-functor value-type-has-value bunion-value-type equal-value-type product-value-type btrue_wf inclusion-partial partial_wf colist_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lemma_by_obid isectElimination thin hypothesis independent_isectElimination sqequalRule because_Cache lambdaEquality productEquality hypothesisEquality universeEquality isect_memberEquality callbyvalueReduce intEquality natural_numberEquality imageElimination productElimination unionElimination equalityElimination applyEquality cumulativity functionEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].    (is-list(t)  \mmember{}  partial(\mBbbB{}))



Date html generated: 2016_05_15-PM-10_07_29
Last ObjectModification: 2015_12_27-PM-06_00_56

Theory : eval!all


Home Index