Nuprl Lemma : list-functor
∀[T:Type]. ContinuousMonotone(L.Unit ⋃ (T × L))
Proof
Definitions occuring in Statement : 
continuous-monotone: ContinuousMonotone(T.F[T]), 
b-union: A ⋃ B, 
uall: ∀[x:A]. B[x], 
unit: Unit, 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
continuous-monotone: ContinuousMonotone(T.F[T]), 
and: P ∧ Q, 
type-monotone: Monotone(T.F[T]), 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
strong-type-continuous: Continuous+(T.F[T]), 
type-continuous: Continuous(T.F[T]), 
guard: {T}, 
ext-eq: A ≡ B, 
decidable: Dec(P), 
or: P ∨ Q, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
b-union: A ⋃ B, 
tunion: ⋃x:A.B[x], 
ifthenelse: if b then t else f fi , 
btrue: tt, 
pi2: snd(t), 
bfalse: ff, 
top: Top, 
pi1: fst(t)
Lemmas referenced : 
subtype_rel_b-union, 
unit_wf2, 
subtype_rel_self, 
subtype_rel_product, 
subtype_rel_wf, 
subtype_rel_weakening, 
nat_wf, 
b-union_wf, 
decidable__equal_bool, 
btrue_wf, 
false_wf, 
le_wf, 
isaxiom_wf_listunion, 
equal_wf, 
ifthenelse_wf, 
axiom-listunion, 
bfalse_wf, 
non-axiom-listunion, 
bool_cases, 
pair-eta, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
productEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
lambdaFormation, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isectEquality, 
applyEquality, 
functionExtensionality, 
functionEquality, 
instantiate, 
productElimination, 
independent_pairEquality, 
dependent_functionElimination, 
unionElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_functionElimination, 
imageMemberEquality, 
dependent_pairEquality, 
baseClosed, 
voidElimination, 
voidEquality, 
applyLambdaEquality
Latex:
\mforall{}[T:Type].  ContinuousMonotone(L.Unit  \mcup{}  (T  \mtimes{}  L))
Date html generated:
2017_04_14-AM-07_54_08
Last ObjectModification:
2017_02_27-PM-03_20_58
Theory : list_0
Home
Index