Nuprl Lemma : union-value-type
∀[A,B:Type].  value-type(A + B)
Proof
Definitions occuring in Statement : 
value-type: value-type(T), 
uall: ∀[x:A]. B[x], 
union: left + right, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
value-type: value-type(T), 
uimplies: b supposing a, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
has-value: (a)↓, 
prop: ℙ, 
squash: ↓T
Lemmas referenced : 
sq_stable__has-value, 
equal_wf, 
equal-wf-base, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
cumulativity, 
lambdaFormation, 
unionElimination, 
sqequalRule, 
sqleReflexivity, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
isect_memberEquality, 
axiomSqleEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].    value-type(A  +  B)
Date html generated:
2017_04_14-AM-07_14_56
Last ObjectModification:
2017_02_27-PM-02_50_27
Theory : call!by!value_1
Home
Index