Step
*
1
2
of Lemma
is-list-if-has-value-ext
1. X : ℕ ⟶ Type
⊢ partial(Unit ⋃ (Top × (⋂n:ℕ. (X n)))) ⊆r (⋂n:ℕ. partial(Unit ⋃ (Top × (X n))))
BY
{ ((BLemma `subtype_rel_isect` THEN Auto)
THEN (Assert ⌜(Unit ⋃ (Top × (⋂n:ℕ. (X n)))) ⊆r (Unit ⋃ (Top × (X n)))⌝⋅ THENA Auto)
THEN (Assert ⌜value-type(Unit ⋃ (Top × (⋂n:ℕ. (X n))))⌝⋅ THENA Auto)
THEN Assert ⌜value-type(Unit ⋃ (Top × (X n)))⌝⋅
THEN Auto) }
Latex:
Latex:
1. X : \mBbbN{} {}\mrightarrow{} Type
\mvdash{} partial(Unit \mcup{} (Top \mtimes{} (\mcap{}n:\mBbbN{}. (X n)))) \msubseteq{}r (\mcap{}n:\mBbbN{}. partial(Unit \mcup{} (Top \mtimes{} (X n))))
By
Latex:
((BLemma `subtype\_rel\_isect` THEN Auto)
THEN (Assert \mkleeneopen{}(Unit \mcup{} (Top \mtimes{} (\mcap{}n:\mBbbN{}. (X n)))) \msubseteq{}r (Unit \mcup{} (Top \mtimes{} (X n)))\mkleeneclose{}\mcdot{} THENA Auto)
THEN (Assert \mkleeneopen{}value-type(Unit \mcup{} (Top \mtimes{} (\mcap{}n:\mBbbN{}. (X n))))\mkleeneclose{}\mcdot{} THENA Auto)
THEN Assert \mkleeneopen{}value-type(Unit \mcup{} (Top \mtimes{} (X n)))\mkleeneclose{}\mcdot{}
THEN Auto)
Home
Index