Nuprl Lemma : is-list-if-has-value-ext

ListLike ≡ partial(Unit ⋃ (Top × ListLike))


Proof




Definitions occuring in Statement :  is-list-if-has-value: ListLike partial: partial(T) b-union: A ⋃ B ext-eq: A ≡ B top: Top unit: Unit product: x:A × B[x]
Definitions unfolded in proof :  is-list-if-has-value: ListLike uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s] uimplies: supposing a continuous-monotone: ContinuousMonotone(T.F[T]) and: P ∧ Q type-monotone: Monotone(T.F[T]) subtype_rel: A ⊆B top: Top all: x:A. B[x] strong-type-continuous: Continuous+(T.F[T]) type-continuous: Continuous(T.F[T]) guard: {T} ext-eq: A ≡ B unit: Unit not: ¬A implies:  Q false: False exists: x:A. B[x] nat: le: A ≤ B less_than': less_than'(a;b) prop: uiff: uiff(P;Q)
Lemmas referenced :  corec-ext partial_wf b-union_wf unit_wf2 top_wf subtype_rel_partial subtype_rel_b-union subtype_rel_self subtype_rel_product subtype_rel_wf subtype_rel_weakening nat_wf partial-type-continuous bunion-value-type equal-value-type product-value-type value-type_wf strong-continuous-b-union continuous-constant strong-continuous-product continuous-id unit-product-disjoint isect2_wf isect-value-type false_wf le_wf subtype_rel_transitivity subtype_rel_isect
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality hypothesis productEquality hypothesisEquality universeEquality independent_isectElimination independent_pairFormation isect_memberFormation introduction because_Cache isect_memberEquality voidElimination voidEquality lambdaFormation axiomEquality equalityTransitivity equalitySymmetry isectEquality applyEquality functionEquality cumulativity productElimination independent_pairEquality intEquality natural_numberEquality dependent_set_memberEquality independent_functionElimination dependent_pairFormation

Latex:
ListLike  \mequiv{}  partial(Unit  \mcup{}  (Top  \mtimes{}  ListLike))



Date html generated: 2016_05_15-PM-10_08_22
Last ObjectModification: 2015_12_27-PM-06_00_21

Theory : eval!all


Home Index