Nuprl Lemma : strong-continuous-b-union

[F,G:Type ⟶ Type].
  (Continuous+(T.F[T] ⋃ G[T])) supposing ((∀T,S:Type.  F[T] ⋂ G[S])) and Continuous+(T.G[T]) and Continuous+(T.F[T]))


Proof




Definitions occuring in Statement :  strong-type-continuous: Continuous+(T.F[T]) isect2: T1 ⋂ T2 b-union: A ⋃ B uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] not: ¬A function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a strong-type-continuous: Continuous+(T.F[T]) ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) btrue: tt bfalse: ff isect2: T1 ⋂ T2 it: guard: {T} all: x:A. B[x]
Lemmas referenced :  bfalse_wf btrue_wf isect2_subtype_rel b-union-void isect2_subtype_rel2 isect2-b-union-subtype strong-subtype-implies strong-subtype-b-union bool_wf subtype_rel_b-union ifthenelse_wf le_wf false_wf strong-type-continuous_wf isect2_wf not_wf all_wf b-union_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation lambdaEquality isectEquality lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality isect_memberEquality productElimination independent_pairEquality axiomEquality functionEquality cumulativity universeEquality instantiate because_Cache equalityTransitivity equalitySymmetry dependent_set_memberEquality natural_numberEquality lambdaFormation imageElimination unionElimination equalityElimination imageMemberEquality dependent_pairEquality independent_isectElimination independent_functionElimination dependent_functionElimination rename voidElimination baseClosed

Latex:
\mforall{}[F,G:Type  {}\mrightarrow{}  Type].
    (Continuous+(T.F[T]  \mcup{}  G[T]))  supposing 
          ((\mforall{}T,S:Type.    (\mneg{}F[T]  \mcap{}  G[S]))  and 
          Continuous+(T.G[T])  and 
          Continuous+(T.F[T]))



Date html generated: 2016_05_13-PM-04_12_14
Last ObjectModification: 2016_01_14-PM-07_30_01

Theory : subtype_1


Home Index