Nuprl Lemma : b-union-void

[V,T:Type].  ((V ⋃ T) ⊆T) ∧ ((T ⋃ V) ⊆T) supposing ¬V


Proof




Definitions occuring in Statement :  b-union: A ⋃ B uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] not: ¬A and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) not: ¬A implies:  Q false: False prop:
Lemmas referenced :  b-union_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality sqequalHypSubstitution imageElimination productElimination thin unionElimination equalityElimination sqequalRule independent_functionElimination hypothesis voidElimination hypothesisEquality lemma_by_obid isectElimination independent_pairFormation independent_pairEquality axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[V,T:Type].    ((V  \mcup{}  T)  \msubseteq{}r  T)  \mwedge{}  ((T  \mcup{}  V)  \msubseteq{}r  T)  supposing  \mneg{}V



Date html generated: 2016_05_13-PM-04_10_09
Last ObjectModification: 2015_12_26-AM-11_22_31

Theory : subtype_1


Home Index