Nuprl Lemma : b-union-void
∀[V,T:Type].  ((V ⋃ T) ⊆r T) ∧ ((T ⋃ V) ⊆r T) supposing ¬V
Proof
Definitions occuring in Statement : 
b-union: A ⋃ B
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
ifthenelse: if b then t else f fi 
, 
pi2: snd(t)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
b-union_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
thin, 
unionElimination, 
equalityElimination, 
sqequalRule, 
independent_functionElimination, 
hypothesis, 
voidElimination, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
independent_pairFormation, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[V,T:Type].    ((V  \mcup{}  T)  \msubseteq{}r  T)  \mwedge{}  ((T  \mcup{}  V)  \msubseteq{}r  T)  supposing  \mneg{}V
Date html generated:
2016_05_13-PM-04_10_09
Last ObjectModification:
2015_12_26-AM-11_22_31
Theory : subtype_1
Home
Index