Nuprl Lemma : strong-subtype-b-union

[A,B:Type].  strong-subtype(A;A ⋃ B) ∧ strong-subtype(B;A ⋃ B) supposing ¬A ⋂ B


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) isect2: T1 ⋂ T2 b-union: A ⋃ B uimplies: supposing a uall: [x:A]. B[x] not: ¬A and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a strong-subtype: strong-subtype(A;B) subtype_rel: A ⊆B not: ¬A implies:  Q false: False cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q prop: isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q)
Lemmas referenced :  isect2_wf subtype_rel_set exists_wf equal_wf strong-subtype_witness b-union_wf not_wf strong-subtype-b-union-better strong-subtype_transitivity strong-subtype-void strong-subtype-ext-equal isect2_subtype_rel2 isect2_subtype_rel bool_wf subtype_rel_b-union_iff subtype_rel_b-union-right subtype_rel_b-union-left
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality sqequalHypSubstitution independent_functionElimination thin hypothesis voidElimination lemma_by_obid isectElimination hypothesisEquality independent_pairFormation voidEquality sqequalRule applyEquality independent_isectElimination productElimination independent_pairEquality because_Cache isect_memberEquality equalityTransitivity equalitySymmetry universeEquality unionElimination equalityElimination

Latex:
\mforall{}[A,B:Type].    strong-subtype(A;A  \mcup{}  B)  \mwedge{}  strong-subtype(B;A  \mcup{}  B)  supposing  \mneg{}A  \mcap{}  B



Date html generated: 2016_05_13-PM-04_12_00
Last ObjectModification: 2015_12_26-AM-11_21_32

Theory : subtype_1


Home Index