Nuprl Lemma : strong-subtype-ext-equal

[A,B:Type].  (strong-subtype(A;B)) supposing ((A ⊆B) and (B ⊆A))


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a strong-subtype: strong-subtype(A;B) cand: c∧ B subtype_rel: A ⊆B guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] prop: implies:  Q
Lemmas referenced :  exists_wf equal_wf subtype_rel_transitivity strong-subtype_witness subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis independent_pairFormation lambdaEquality hypothesisEquality applyEquality sqequalHypSubstitution setElimination thin rename setEquality lemma_by_obid isectElimination sqequalRule because_Cache independent_isectElimination independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A,B:Type].    (strong-subtype(A;B))  supposing  ((A  \msubseteq{}r  B)  and  (B  \msubseteq{}r  A))



Date html generated: 2016_05_13-PM-04_11_02
Last ObjectModification: 2015_12_26-AM-11_21_41

Theory : subtype_1


Home Index