Nuprl Lemma : subtype_rel_b-union_iff

[A,B,C:Type].  uiff((B ⋃ C) ⊆A;(B ⊆A) ∧ (C ⊆A))


Proof




Definitions occuring in Statement :  b-union: A ⋃ B uiff: uiff(P;Q) subtype_rel: A ⊆B uall: [x:A]. B[x] and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a guard: {T} subtype_rel: A ⊆B prop: b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t)
Lemmas referenced :  subtype_rel_b-union-left subtype_rel_transitivity b-union_wf subtype_rel_b-union-right subtype_rel_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution lemma_by_obid isectElimination thin hypothesisEquality hypothesis because_Cache independent_isectElimination sqequalRule productElimination independent_pairEquality axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality lambdaEquality imageElimination unionElimination equalityElimination applyEquality

Latex:
\mforall{}[A,B,C:Type].    uiff((B  \mcup{}  C)  \msubseteq{}r  A;(B  \msubseteq{}r  A)  \mwedge{}  (C  \msubseteq{}r  A))



Date html generated: 2016_05_13-PM-03_57_54
Last ObjectModification: 2015_12_26-AM-10_52_04

Theory : bool_1


Home Index