Nuprl Lemma : strong-subtype-b-union-better

[A,B:Type].  strong-subtype(A;A ⋃ B) supposing strong-subtype(A ⋂ B;B)


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) isect2: T1 ⋂ T2 b-union: A ⋃ B uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a strong-subtype: strong-subtype(A;B) cand: c∧ B subtype_rel: A ⊆B b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) exists: x:A. B[x] implies:  Q prop: btrue: tt so_lambda: λ2x.t[x] so_apply: x[s] top: Top guard: {T} all: x:A. B[x] pi1: fst(t) or: P ∨ Q sq_type: SQType(T) uiff: uiff(P;Q) and: P ∧ Q bfalse: ff isect2: T1 ⋂ T2 it: squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  subtype_rel_b-union-left b-union_wf strong-subtype_witness strong-subtype_wf isect2_wf istype-universe btrue_wf ifthenelse_wf pi2_wf top_wf istype-top istype-void pair-eta subtype_rel_product bool_wf pi1_wf bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert eqff_to_assert assert_of_bnot strong-subtype-implies equal_wf squash_wf true_wf isect2_subtype_rel subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_pairFormation Error :lambdaEquality_alt,  setElimination rename imageElimination productElimination unionElimination equalityElimination sqequalRule equalityTransitivity equalitySymmetry Error :setIsType,  Error :universeIsType,  Error :productIsType,  Error :equalityIstype,  because_Cache applyEquality independent_functionElimination Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :inhabitedIsType,  instantiate universeEquality imageEqInduction baseClosed Error :dependent_pairEquality_alt,  independent_pairEquality voidElimination independent_isectElimination Error :lambdaFormation_alt,  applyLambdaEquality dependent_functionElimination cumulativity natural_numberEquality imageMemberEquality

Latex:
\mforall{}[A,B:Type].    strong-subtype(A;A  \mcup{}  B)  supposing  strong-subtype(A  \mcap{}  B;B)



Date html generated: 2019_06_20-PM-00_28_04
Last ObjectModification: 2019_01_02-PM-03_17_43

Theory : subtype_1


Home Index