Nuprl Lemma : strong-subtype-b-union-better
∀[A,B:Type].  strong-subtype(A;A ⋃ B) supposing strong-subtype(A ⋂ B;B)
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B)
, 
isect2: T1 ⋂ T2
, 
b-union: A ⋃ B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
ifthenelse: if b then t else f fi 
, 
pi2: snd(t)
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
btrue: tt
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
top: Top
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
pi1: fst(t)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
bfalse: ff
, 
isect2: T1 ⋂ T2
, 
it: ⋅
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
subtype_rel_b-union-left, 
b-union_wf, 
strong-subtype_witness, 
strong-subtype_wf, 
isect2_wf, 
istype-universe, 
btrue_wf, 
ifthenelse_wf, 
pi2_wf, 
top_wf, 
istype-top, 
istype-void, 
pair-eta, 
subtype_rel_product, 
bool_wf, 
pi1_wf, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
eqtt_to_assert, 
eqff_to_assert, 
assert_of_bnot, 
strong-subtype-implies, 
equal_wf, 
squash_wf, 
true_wf, 
isect2_subtype_rel, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
Error :lambdaEquality_alt, 
setElimination, 
rename, 
imageElimination, 
productElimination, 
unionElimination, 
equalityElimination, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
Error :setIsType, 
Error :universeIsType, 
Error :productIsType, 
Error :equalityIstype, 
because_Cache, 
applyEquality, 
independent_functionElimination, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
instantiate, 
universeEquality, 
imageEqInduction, 
baseClosed, 
Error :dependent_pairEquality_alt, 
independent_pairEquality, 
voidElimination, 
independent_isectElimination, 
Error :lambdaFormation_alt, 
applyLambdaEquality, 
dependent_functionElimination, 
cumulativity, 
natural_numberEquality, 
imageMemberEquality
Latex:
\mforall{}[A,B:Type].    strong-subtype(A;A  \mcup{}  B)  supposing  strong-subtype(A  \mcap{}  B;B)
Date html generated:
2019_06_20-PM-00_28_04
Last ObjectModification:
2019_01_02-PM-03_17_43
Theory : subtype_1
Home
Index