Nuprl Lemma : isect2-b-union-subtype

[A,B,C:Type].  A ⋂ B ⋃ C ⊆(A ⋂ B ⋃ A ⋂ C) supposing ¬B ⋂ C


Proof




Definitions occuring in Statement :  isect2: T1 ⋂ T2 b-union: A ⋃ B uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] not: ¬A universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B prop: exists: x:A. B[x] b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) btrue: tt isect2: T1 ⋂ T2 it: bfalse: ff and: P ∧ Q implies:  Q guard: {T} all: x:A. B[x]
Lemmas referenced :  bfalse_wf strong-subtype-implies strong-subtype-b-union ifthenelse_wf bool_wf isect2_subtype_rel btrue_wf equal_wf isect2_subtype_rel2 not_wf b-union_wf isect2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality dependent_pairFormation applyEquality productElimination imageElimination unionElimination equalityElimination imageMemberEquality dependent_pairEquality instantiate baseClosed rename independent_isectElimination independent_functionElimination dependent_functionElimination

Latex:
\mforall{}[A,B,C:Type].    A  \mcap{}  B  \mcup{}  C  \msubseteq{}r  (A  \mcap{}  B  \mcup{}  A  \mcap{}  C)  supposing  \mneg{}B  \mcap{}  C



Date html generated: 2016_05_13-PM-04_12_04
Last ObjectModification: 2016_01_14-PM-07_29_55

Theory : subtype_1


Home Index