Nuprl Lemma : isect2-b-union-subtype
∀[A,B,C:Type].  A ⋂ B ⋃ C ⊆r (A ⋂ B ⋃ A ⋂ C) supposing ¬B ⋂ C
Proof
Definitions occuring in Statement : 
isect2: T1 ⋂ T2
, 
b-union: A ⋃ B
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
ifthenelse: if b then t else f fi 
, 
pi2: snd(t)
, 
btrue: tt
, 
isect2: T1 ⋂ T2
, 
it: ⋅
, 
bfalse: ff
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
all: ∀x:A. B[x]
Lemmas referenced : 
bfalse_wf, 
strong-subtype-implies, 
strong-subtype-b-union, 
ifthenelse_wf, 
bool_wf, 
isect2_subtype_rel, 
btrue_wf, 
equal_wf, 
isect2_subtype_rel2, 
not_wf, 
b-union_wf, 
isect2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_pairFormation, 
applyEquality, 
productElimination, 
imageElimination, 
unionElimination, 
equalityElimination, 
imageMemberEquality, 
dependent_pairEquality, 
instantiate, 
baseClosed, 
rename, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}[A,B,C:Type].    A  \mcap{}  B  \mcup{}  C  \msubseteq{}r  (A  \mcap{}  B  \mcup{}  A  \mcap{}  C)  supposing  \mneg{}B  \mcap{}  C
Date html generated:
2016_05_13-PM-04_12_04
Last ObjectModification:
2016_01_14-PM-07_29_55
Theory : subtype_1
Home
Index