Nuprl Lemma : unit-product-disjoint

[T,S:Type].  Unit ⋂ T × S)


Proof




Definitions occuring in Statement :  isect2: T1 ⋂ T2 uall: [x:A]. B[x] not: ¬A unit: Unit product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B all: x:A. B[x] prop: unit: Unit
Lemmas referenced :  isect2_wf unit_wf2 btrue_neq_bfalse isect2_decomp isect2_subtype_rel2 equal_wf btrue_wf isect2_subtype_rel bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination extract_by_obid isectElimination productEquality cumulativity hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination because_Cache universeEquality isect_memberEquality rename independent_pairFormation productElimination equalityTransitivity equalitySymmetry applyEquality equalityElimination

Latex:
\mforall{}[T,S:Type].    (\mneg{}Unit  \mcap{}  T  \mtimes{}  S)



Date html generated: 2018_05_21-PM-10_19_02
Last ObjectModification: 2017_07_26-PM-06_36_49

Theory : eval!all


Home Index