Step
*
1
of Lemma
is-list-if-has-value-rec-decomp
1. t : Base
2. (t)↓
3. ↑isaxiom(t)
4. ∀a,b:Top. (if t is a pair then a otherwise b ~ b)
⊢ t ~ Ax
BY
{ xxx((Assert ⌜isaxiom(t) ∈ 𝔹⌝⋅ THENA HVimplies2 0 [2])
THEN BoolCase ⌜isaxiom(t)⌝⋅
THEN Auto
THEN FLemma `isaxiom-implies` [-1]
THEN Auto)xxx }
Latex:
Latex:
1. t : Base
2. (t)\mdownarrow{}
3. \muparrow{}isaxiom(t)
4. \mforall{}a,b:Top. (if t is a pair then a otherwise b \msim{} b)
\mvdash{} t \msim{} Ax
By
Latex:
xxx((Assert \mkleeneopen{}isaxiom(t) \mmember{} \mBbbB{}\mkleeneclose{}\mcdot{} THENA HVimplies2 0 [2])
THEN BoolCase \mkleeneopen{}isaxiom(t)\mkleeneclose{}\mcdot{}
THEN Auto
THEN FLemma `isaxiom-implies` [-1]
THEN Auto)xxx
Home
Index