Nuprl Lemma : is-list-if-has-value-rec-decomp
∀[t:Base]. (if ispair(t) then t ~ <fst(t), snd(t)> else t ~ Ax fi ) supposing ((t)↓ and is-list-if-has-value-rec(t))
Proof
Definitions occuring in Statement : 
is-list-if-has-value-rec: is-list-if-has-value-rec(t)
, 
has-value: (a)↓
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
ispair: if z is a pair then a otherwise b
, 
pair: <a, b>
, 
base: Base
, 
sqequal: s ~ t
, 
axiom: Ax
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
is-list-if-has-value-rec: is-list-if-has-value-rec(t)
, 
is-list-if-has-value-fun: is-list-if-has-value-fun(t;n)
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
top: Top
, 
or: P ∨ Q
, 
has-value: (a)↓
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
bool: 𝔹
, 
assert: ↑b
, 
exposed-it: exposed-it
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
bnot: ¬bb
Lemmas referenced : 
false_wf, 
le_wf, 
primrec1_lemma, 
has-value-implies-dec-ispair-2, 
top_wf, 
ispair-bool-if-has-value, 
equal_wf, 
has-value_wf_base, 
is-list-if-has-value-rec_wf, 
bool_wf, 
base_wf, 
has-value-implies-dec-isaxiom-2, 
btrue_wf, 
eqtt_to_assert, 
subtype_base_sq, 
subtype_rel_self, 
isaxiom-implies, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
extract_by_obid, 
hypothesisEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_functionElimination, 
unionElimination, 
because_Cache, 
sqequalAxiom, 
sqequalIntensionalEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
equalityElimination, 
productElimination, 
cumulativity, 
dependent_pairFormation, 
promote_hyp
Latex:
\mforall{}[t:Base]
    (if  ispair(t)  then  t  \msim{}  <fst(t),  snd(t)>  else  t  \msim{}  Ax  fi  )  supposing 
          ((t)\mdownarrow{}  and 
          is-list-if-has-value-rec(t))
Date html generated:
2018_05_21-PM-10_19_30
Last ObjectModification:
2017_07_26-PM-06_37_02
Theory : eval!all
Home
Index