Nuprl Lemma : isaxiom-implies

[t:Base]. (t Ax) supposing ((↑isaxiom(t)) and (t)↓)


Proof




Definitions occuring in Statement :  has-value: (a)↓ assert: b bfalse: ff btrue: tt uimplies: supposing a uall: [x:A]. B[x] isaxiom: if Ax then otherwise b base: Base sqequal: t axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a has-value: (a)↓ assert: b ifthenelse: if then else fi  btrue: tt implies:  Q prop: bfalse: ff false: False top: Top
Lemmas referenced :  base_wf bfalse_wf top_wf btrue_wf is-exception_wf has-value_wf_base assert_wf false_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin isaxiomCases divergentSqle hypothesis because_Cache sqequalRule lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination sqequalAxiom isect_memberEquality hypothesisEquality voidElimination independent_functionElimination baseClosed voidEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[t:Base].  (t  \msim{}  Ax)  supposing  ((\muparrow{}isaxiom(t))  and  (t)\mdownarrow{})



Date html generated: 2016_05_13-PM-03_27_10
Last ObjectModification: 2016_01_14-PM-06_43_52

Theory : call!by!value_1


Home Index