Nuprl Lemma : islist-append-nil-sqequal-islist

[t:Top]. (islist(t []) islist(t))


Proof




Definitions occuring in Statement :  islist: islist(t) append: as bs nil: [] uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T islist: islist(t)
Lemmas referenced :  eval_list-append-nil-is-eval_list top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalAxiom

Latex:
\mforall{}[t:Top].  (islist(t  @  [])  \msim{}  islist(t))



Date html generated: 2016_05_15-PM-10_07_18
Last ObjectModification: 2015_12_27-PM-06_01_00

Theory : eval!all


Home Index