Nuprl Lemma : islist-append-nil-sqequal-islist
∀[t:Top]. (islist(t @ []) ~ islist(t))
Proof
Definitions occuring in Statement : 
islist: islist(t)
, 
append: as @ bs
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
islist: islist(t)
Lemmas referenced : 
eval_list-append-nil-is-eval_list, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalAxiom
Latex:
\mforall{}[t:Top].  (islist(t  @  [])  \msim{}  islist(t))
Date html generated:
2016_05_15-PM-10_07_18
Last ObjectModification:
2015_12_27-PM-06_01_00
Theory : eval!all
Home
Index