Step
*
3
of Lemma
islist-iff-length-has-value
1. T : Type
2. t : colist(T)
3. (||t||)↓
⊢ (is-list(t))↓
BY
{ (RepUR ``length list_ind`` -1
THEN Compactness (-1)
THEN Thin (-3)
THEN MoveToConcl (-1)
THEN MoveToConcl 2
THEN UseWitness ⌜λt,x. Ax⌝⋅
THEN WeakNatInd (-1)) }
1
.....basecase.....
1. T : Type
2. j : ℤ
⊢ λt,x. Ax ∈ ∀t:colist(T)
((λlist_ind,L. eval v = L in
if v is a pair then let a,b = v
in (list_ind b) + 1 otherwise if v = Ax then 0 otherwise ⊥^0
⊥
t)↓
⇒ (is-list(t))↓)
2
.....upcase.....
1. T : Type
2. j : ℤ
3. 0 < j
4. λt,x. Ax ∈ ∀t:colist(T)
((λlist_ind,L. eval v = L in
if v is a pair then let a,b = v
in (list_ind b) + 1 otherwise if v = Ax then 0 otherwise ⊥^j - 1
⊥
t)↓
⇒ (is-list(t))↓)
⊢ λt,x. Ax ∈ ∀t:colist(T)
((λlist_ind,L. eval v = L in
if v is a pair then let a,b = v
in (list_ind b) + 1 otherwise if v = Ax then 0 otherwise ⊥^j
⊥
t)↓
⇒ (is-list(t))↓)
Latex:
Latex:
1. T : Type
2. t : colist(T)
3. (||t||)\mdownarrow{}
\mvdash{} (is-list(t))\mdownarrow{}
By
Latex:
(RepUR ``length list\_ind`` -1
THEN Compactness (-1)
THEN Thin (-3)
THEN MoveToConcl (-1)
THEN MoveToConcl 2
THEN UseWitness \mkleeneopen{}\mlambda{}t,x. Ax\mkleeneclose{}\mcdot{}
THEN WeakNatInd (-1))
Home
Index