Nuprl Lemma : islist-iff-length-has-value
∀[T:Type]. ∀[t:colist(T)].  uiff((is-list(t))↓;(||t||)↓)
Proof
Definitions occuring in Statement : 
is-list: is-list(t)
, 
length: ||as||
, 
colist: colist(T)
, 
has-value: (a)↓
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
has-value: (a)↓
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
is-list-fun: is-list-fun()
, 
prop: ℙ
, 
top: Top
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
is-list: is-list(t)
, 
is-list-approx: is-list-approx(j)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat_plus: ℕ+
, 
ext-eq: A ≡ B
, 
unit: Unit
, 
list_ind: list_ind, 
length: ||as||
, 
nil: []
, 
it: ⋅
, 
cons: [a / b]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
pi2: snd(t)
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
bool: 𝔹
, 
btrue: tt
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
compose: f o g
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
Lemmas referenced : 
istype-universe, 
colist_wf, 
subtract-1-ge-0, 
istype-less_than, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
strictness-apply, 
fun_exp0_lemma, 
has-value_wf_base, 
bottom_diverge, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__lt, 
is-list-approx-step, 
colist-ext, 
subtype_rel_b-union-right, 
unit_wf2, 
b-union_wf, 
subtype_rel_transitivity, 
unit_subtype_colist, 
co-list-cases, 
is-exception_wf, 
length_of_cons_lemma, 
termination, 
nat_wf, 
int-value-type, 
le_wf, 
set-value-type, 
colength_wf, 
length-is-colength, 
value-type-has-value, 
is-list-approx_wf, 
decidable__le, 
has-value_wf-partial, 
bool_wf, 
union-value-type, 
is-list_wf, 
fun_exp_unroll_1, 
istype-sqequal, 
istype-le, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
assert_of_bnot, 
eqff_to_assert, 
iff_weakening_uiff, 
iff_transitivity, 
assert_of_eq_int, 
eqtt_to_assert, 
uiff_transitivity, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
istype-assert, 
not_wf, 
bnot_wf, 
assert_wf, 
int_subtype_base, 
equal-wf-base, 
eq_int_wf, 
fun_exp_unroll, 
bottom_wf-partial, 
add-wf-partial-nat, 
istype-false, 
nat-partial-nat
Rules used in proof : 
universeEquality, 
instantiate, 
hypothesisEquality, 
thin, 
isectElimination, 
extract_by_obid, 
universeIsType, 
hypothesis, 
axiomSqleEquality, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
independent_pairFormation, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
inhabitedIsType, 
functionIsTypeImplies, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
voidElimination, 
isect_memberEquality_alt, 
dependent_functionElimination, 
int_eqEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
lambdaFormation_alt, 
intWeakElimination, 
rename, 
setElimination, 
compactness, 
lambdaEquality, 
voidEquality, 
isect_memberEquality, 
baseClosed, 
cumulativity, 
because_Cache, 
unionElimination, 
dependent_set_memberEquality_alt, 
productEquality, 
equalityElimination, 
productElimination, 
hypothesis_subsumption, 
sqleReflexivity, 
divergentSqle, 
intEquality, 
closedConclusion, 
applyEquality, 
addEquality, 
equalityIsType1, 
promote_hyp, 
equalityIstype, 
functionIsType, 
sqequalBase, 
baseApply, 
callbyvalueAdd
Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].    uiff((is-list(t))\mdownarrow{};(||t||)\mdownarrow{})
Date html generated:
2020_05_20-AM-09_08_02
Last ObjectModification:
2020_02_03-AM-11_34_30
Theory : eval!all
Home
Index