Nuprl Lemma : is-list-approx-step

j:ℕ+. ∀[x:Top]. (is-list-approx(j) is-list-fun() is-list-approx(j 1) x)


Proof




Definitions occuring in Statement :  is-list-approx: is-list-approx(j) is-list-fun: is-list-fun() nat_plus: + uall: [x:A]. B[x] top: Top all: x:A. B[x] apply: a subtract: m natural_number: $n sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T is-list-approx: is-list-approx(j) top: Top
Lemmas referenced :  fun_exp_unroll_1 top_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom

Latex:
\mforall{}j:\mBbbN{}\msupplus{}.  \mforall{}[x:Top].  (is-list-approx(j)  x  \msim{}  is-list-fun()  is-list-approx(j  -  1)  x)



Date html generated: 2016_05_15-PM-10_09_55
Last ObjectModification: 2015_12_27-PM-05_59_08

Theory : eval!all


Home Index