Nuprl Lemma : is-list-approx-step
∀j:ℕ+. ∀[x:Top]. (is-list-approx(j) x ~ is-list-fun() is-list-approx(j - 1) x)
Proof
Definitions occuring in Statement : 
is-list-approx: is-list-approx(j)
, 
is-list-fun: is-list-fun()
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
subtract: n - m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
is-list-approx: is-list-approx(j)
, 
top: Top
Lemmas referenced : 
fun_exp_unroll_1, 
top_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom
Latex:
\mforall{}j:\mBbbN{}\msupplus{}.  \mforall{}[x:Top].  (is-list-approx(j)  x  \msim{}  is-list-fun()  is-list-approx(j  -  1)  x)
Date html generated:
2016_05_15-PM-10_09_55
Last ObjectModification:
2015_12_27-PM-05_59_08
Theory : eval!all
Home
Index