Nuprl Lemma : is-list-approx_wf
∀T:Type. ∀j:ℕ.  (is-list-approx(j) ∈ colist(T) ⟶ partial(𝔹))
Proof
Definitions occuring in Statement : 
is-list-approx: is-list-approx(j)
, 
colist: colist(T)
, 
partial: partial(T)
, 
nat: ℕ
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
is-list-approx: is-list-approx(j)
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bool: 𝔹
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat_plus: ℕ+
Lemmas referenced : 
nat_wf, 
is-list-fun_wf, 
fun_exp_unroll_1, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
unit_wf2, 
union-value-type, 
bool_wf, 
colist_wf, 
bottom_wf_function, 
fun_exp0_lemma, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
introduction, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
because_Cache, 
unionElimination, 
dependent_set_memberEquality, 
applyEquality, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}j:\mBbbN{}.    (is-list-approx(j)  \mmember{}  colist(T)  {}\mrightarrow{}  partial(\mBbbB{}))
Date html generated:
2016_05_15-PM-10_09_51
Last ObjectModification:
2016_01_11-PM-06_09_24
Theory : eval!all
Home
Index