Nuprl Lemma : is-list-fun_wf
∀[T:Type]. (is-list-fun() ∈ (colist(T) ⟶ partial(𝔹)) ⟶ colist(T) ⟶ partial(𝔹))
Proof
Definitions occuring in Statement : 
is-list-fun: is-list-fun()
, 
colist: colist(T)
, 
partial: partial(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
is-list-fun: is-list-fun()
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
nil: []
, 
bfalse: ff
, 
cons: [a / b]
, 
pi2: snd(t)
, 
prop: ℙ
Lemmas referenced : 
value-type-has-value, 
colist_wf, 
colist-value-type, 
co-list-has-value, 
co-list-subtype, 
b-union_wf, 
unit_wf2, 
isaxiom_wf_listunion, 
bool_wf, 
subtype_rel_b-union-left, 
axiom-listunion, 
btrue_wf, 
inclusion-partial, 
union-value-type, 
subtype_rel_b-union-right, 
non-axiom-listunion, 
equal_wf, 
partial_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
callbyvalueReduce, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
applyEquality, 
productEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
hypothesis_subsumption, 
because_Cache, 
productElimination, 
rename, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
functionEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  (is-list-fun()  \mmember{}  (colist(T)  {}\mrightarrow{}  partial(\mBbbB{}))  {}\mrightarrow{}  colist(T)  {}\mrightarrow{}  partial(\mBbbB{}))
Date html generated:
2018_05_21-PM-10_19_46
Last ObjectModification:
2017_07_26-PM-06_37_10
Theory : eval!all
Home
Index