Nuprl Lemma : is-list-fun_wf

[T:Type]. (is-list-fun() ∈ (colist(T) ⟶ partial(𝔹)) ⟶ colist(T) ⟶ partial(𝔹))


Proof




Definitions occuring in Statement :  is-list-fun: is-list-fun() colist: colist(T) partial: partial(T) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is-list-fun: is-list-fun() has-value: (a)↓ uimplies: supposing a subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt nil: [] bfalse: ff cons: [a b] pi2: snd(t) prop:
Lemmas referenced :  value-type-has-value colist_wf colist-value-type co-list-has-value co-list-subtype b-union_wf unit_wf2 isaxiom_wf_listunion bool_wf subtype_rel_b-union-left axiom-listunion btrue_wf inclusion-partial union-value-type subtype_rel_b-union-right non-axiom-listunion equal_wf partial_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis independent_isectElimination applyEquality productEquality lambdaFormation unionElimination equalityElimination hypothesis_subsumption because_Cache productElimination rename functionExtensionality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination functionEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  (is-list-fun()  \mmember{}  (colist(T)  {}\mrightarrow{}  partial(\mBbbB{}))  {}\mrightarrow{}  colist(T)  {}\mrightarrow{}  partial(\mBbbB{}))



Date html generated: 2018_05_21-PM-10_19_46
Last ObjectModification: 2017_07_26-PM-06_37_10

Theory : eval!all


Home Index