Nuprl Lemma : co-list-subtype

[T:Type]. (colist(T) ⊆(Unit ⋃ (T × colist(T))))


Proof




Definitions occuring in Statement :  colist: colist(T) b-union: A ⋃ B subtype_rel: A ⊆B uall: [x:A]. B[x] unit: Unit product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q
Lemmas referenced :  co-list-ext
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination universeEquality

Latex:
\mforall{}[T:Type].  (colist(T)  \msubseteq{}r  (Unit  \mcup{}  (T  \mtimes{}  colist(T))))



Date html generated: 2016_05_15-PM-10_09_04
Last ObjectModification: 2015_12_27-PM-05_59_49

Theory : eval!all


Home Index