Nuprl Lemma : co-list-subtype
∀[T:Type]. (colist(T) ⊆r (Unit ⋃ (T × colist(T))))
Proof
Definitions occuring in Statement : 
colist: colist(T), 
b-union: A ⋃ B, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
unit: Unit, 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ext-eq: A ≡ B, 
and: P ∧ Q
Lemmas referenced : 
co-list-ext
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
universeEquality
Latex:
\mforall{}[T:Type].  (colist(T)  \msubseteq{}r  (Unit  \mcup{}  (T  \mtimes{}  colist(T))))
Date html generated:
2016_05_15-PM-10_09_04
Last ObjectModification:
2015_12_27-PM-05_59_49
Theory : eval!all
Home
Index