Nuprl Lemma : co-list-ext

[T:Type]. colist(T) ≡ Unit ⋃ (T × colist(T))


Proof




Definitions occuring in Statement :  colist: colist(T) b-union: A ⋃ B ext-eq: A ≡ B uall: [x:A]. B[x] unit: Unit product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B
Lemmas referenced :  colist-ext
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule productElimination independent_pairEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  colist(T)  \mequiv{}  Unit  \mcup{}  (T  \mtimes{}  colist(T))



Date html generated: 2016_05_15-PM-10_09_02
Last ObjectModification: 2015_12_27-PM-05_59_52

Theory : eval!all


Home Index