Nuprl Lemma : co-list-has-value
∀[T:Type]. ∀[t:colist(T)].  (t)↓
Proof
Definitions occuring in Statement : 
colist: colist(T)
, 
has-value: (a)↓
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
has-value: (a)↓
Lemmas referenced : 
value-type-has-value, 
colist_wf, 
colist-value-type
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
axiomSqleEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].    (t)\mdownarrow{}
Date html generated:
2016_05_15-PM-10_09_16
Last ObjectModification:
2015_12_27-PM-05_59_36
Theory : eval!all
Home
Index