Nuprl Lemma : co-list-has-value

[T:Type]. ∀[t:colist(T)].  (t)↓


Proof




Definitions occuring in Statement :  colist: colist(T) has-value: (a)↓ uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a has-value: (a)↓
Lemmas referenced :  value-type-has-value colist_wf colist-value-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination sqequalRule axiomSqleEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].    (t)\mdownarrow{}



Date html generated: 2016_05_15-PM-10_09_16
Last ObjectModification: 2015_12_27-PM-05_59_36

Theory : eval!all


Home Index