Nuprl Lemma : bottom_wf_function
∀[A:Type]. ∀[B:A ⟶ Type].  ⊥ ∈ a:A ⟶ partial(B[a]) supposing ∀a:A. value-type(B[a])
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
bottom: ⊥
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
top: Top
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
all: ∀x:A. B[x]
Lemmas referenced : 
value-type_wf, 
all_wf, 
bottom_wf-partial, 
strictness-apply
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
functionExtensionality, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
because_Cache, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    \mbot{}  \mmember{}  a:A  {}\mrightarrow{}  partial(B[a])  supposing  \mforall{}a:A.  value-type(B[a])
Date html generated:
2016_05_14-AM-06_09_47
Last ObjectModification:
2016_01_06-PM-08_35_12
Theory : partial_1
Home
Index