Nuprl Lemma : bottom_wf_function

[A:Type]. ∀[B:A ⟶ Type].  ⊥ ∈ a:A ⟶ partial(B[a]) supposing ∀a:A. value-type(B[a])


Proof




Definitions occuring in Statement :  partial: partial(T) bottom: value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a top: Top so_apply: x[s] prop: so_lambda: λ2x.t[x] guard: {T} all: x:A. B[x]
Lemmas referenced :  value-type_wf all_wf bottom_wf-partial strictness-apply
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis applyEquality hypothesisEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry lambdaEquality because_Cache functionEquality cumulativity universeEquality dependent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    \mbot{}  \mmember{}  a:A  {}\mrightarrow{}  partial(B[a])  supposing  \mforall{}a:A.  value-type(B[a])



Date html generated: 2016_05_14-AM-06_09_47
Last ObjectModification: 2016_01_06-PM-08_35_12

Theory : partial_1


Home Index