Nuprl Lemma : co-list-cases

[T:Type]
  ∀x:colist(T)
    (((↑isaxiom(x)) ∧ (x Ax ∈ Unit)) ∨ ((↑ispair(x)) ∧ (∃t:T. ∃y:colist(T). (x = <t, y> ∈ (T × colist(T))))))


Proof




Definitions occuring in Statement :  colist: colist(T) assert: b bfalse: ff btrue: tt uall: [x:A]. B[x] ispair: if is pair then otherwise b isaxiom: if Ax then otherwise b all: x:A. B[x] exists: x:A. B[x] or: P ∨ Q and: P ∧ Q unit: Unit pair: <a, b> product: x:A × B[x] universe: Type equal: t ∈ T axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B implies:  Q b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) assert: b btrue: tt bfalse: ff or: P ∨ Q and: P ∧ Q true: True prop: false: False exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  co-list-subtype b-union_wf unit_wf2 colist_wf false_wf equal_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut hypothesisEquality applyEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule productEquality cumulativity imageElimination productElimination unionElimination equalityElimination inlEquality independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry voidElimination dependent_functionElimination independent_functionElimination inrEquality natural_numberEquality dependent_pairEquality because_Cache lambdaEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}x:colist(T).  (((\muparrow{}isaxiom(x))  \mwedge{}  (x  =  Ax))  \mvee{}  ((\muparrow{}ispair(x))  \mwedge{}  (\mexists{}t:T.  \mexists{}y:colist(T).  (x  =  <t,  y>))))



Date html generated: 2018_05_21-PM-10_19_44
Last ObjectModification: 2017_07_26-PM-06_37_09

Theory : eval!all


Home Index