Step
*
of Lemma
fpf-join-single-property
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[f:a:A fp-> B[a]]. ∀[a:A]. ∀[v:B[a]]. ∀[eq:EqDecider(A)]. ∀[b:A].
({(↑b ∈ dom(f)) ∧ (f ⊕ a : v(b) = f(b) ∈ B[b])}) supposing ((↑b ∈ dom(f ⊕ a : v)) and (¬(b = a ∈ A)))
BY
{ xxx(Unfold `guard` 0
THEN xxx((UnivCD THENA Auto)
THEN (RWO "fpf-join-dom" (-1) THENM (D -1 THEN Try (RWO "fpf-single-dom" (-1))))
THEN Auto)xxx
)xxx }
1
1. A : Type
2. B : A ⟶ Type
3. f : a:A fp-> B[a]
4. a : A
5. v : B[a]
6. eq : EqDecider(A)
7. b : A
8. ¬(b = a ∈ A)
9. ↑b ∈ dom(f)
10. ↑b ∈ dom(f)
⊢ f ⊕ a : v(b) = f(b) ∈ B[b]
Latex:
Latex:
\mforall{}[A:Type]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[f:a:A fp-> B[a]]. \mforall{}[a:A]. \mforall{}[v:B[a]]. \mforall{}[eq:EqDecider(A)]. \mforall{}[b:A].
(\{(\muparrow{}b \mmember{} dom(f)) \mwedge{} (f \moplus{} a : v(b) = f(b))\}) supposing ((\muparrow{}b \mmember{} dom(f \moplus{} a : v)) and (\mneg{}(b = a)))
By
Latex:
xxx(Unfold `guard` 0
THEN xxx((UnivCD THENA Auto)
THEN (RWO "fpf-join-dom" (-1) THENM (D -1 THEN Try (RWO "fpf-single-dom" (-1))))
THEN Auto)xxx
)xxx
Home
Index