Nuprl Lemma : fpf-join-single-property
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[f:a:A fp-> B[a]]. ∀[a:A]. ∀[v:B[a]]. ∀[eq:EqDecider(A)]. ∀[b:A].
  ({(↑b ∈ dom(f)) ∧ (f ⊕ a : v(b) = f(b) ∈ B[b])}) supposing ((↑b ∈ dom(f ⊕ a : v)) and (¬(b = a ∈ A)))
Proof
Definitions occuring in Statement : 
fpf-single: x : v, 
fpf-join: f ⊕ g, 
fpf-ap: f(x), 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
so_apply: x[s], 
not: ¬A, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
or: P ∨ Q, 
cand: A c∧ B, 
top: Top, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
not: ¬A, 
false: False, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
fpf-join-dom, 
fpf-single_wf, 
fpf-single-dom, 
fpf-dom_wf, 
subtype-fpf2, 
top_wf, 
assert_wf, 
fpf-join_wf, 
not_wf, 
equal_wf, 
deq_wf, 
fpf_wf, 
assert_witness, 
fpf-join-ap-sq, 
bool_wf, 
eqtt_to_assert, 
fpf-ap_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
dependent_functionElimination, 
instantiate, 
hypothesis, 
productElimination, 
independent_functionElimination, 
unionElimination, 
independent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
lambdaFormation, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[a:A].  \mforall{}[v:B[a]].  \mforall{}[eq:EqDecider(A)].  \mforall{}[b:A].
    (\{(\muparrow{}b  \mmember{}  dom(f))  \mwedge{}  (f  \moplus{}  a  :  v(b)  =  f(b))\})  supposing  ((\muparrow{}b  \mmember{}  dom(f  \moplus{}  a  :  v))  and  (\mneg{}(b  =  a)))
Date html generated:
2018_05_21-PM-09_29_08
Last ObjectModification:
2018_02_09-AM-10_24_11
Theory : finite!partial!functions
Home
Index