Nuprl Lemma : fpf-join_wf
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[f,g:a:A fp-> B[a]]. ∀[eq:EqDecider(A)].  (f ⊕ g ∈ a:A fp-> B[a])
Proof
Definitions occuring in Statement : 
fpf-join: f ⊕ g, 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
fpf-join: f ⊕ g, 
fpf: a:A fp-> B[a], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
pi1: fst(t), 
all: ∀x:A. B[x], 
top: Top, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
guard: {T}, 
fpf-cap: f(x)?z, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
fpf-dom: x ∈ dom(f), 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
false: False
Lemmas referenced : 
append_wf, 
filter_wf5, 
l_member_wf, 
pi1_wf_top, 
list_wf, 
bnot_wf, 
fpf-dom_wf, 
subtype_rel_product, 
top_wf, 
subtype_rel_dep_function, 
set_wf, 
deq_wf, 
subtype-fpf2, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
fpf-ap_wf, 
member_append, 
deq-member_wf, 
assert-deq-member, 
member_filter
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
dependent_pairEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
productElimination, 
because_Cache, 
lambdaEquality, 
lambdaFormation, 
hypothesis, 
independent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
applyEquality, 
functionEquality, 
setEquality, 
functionExtensionality, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
universeEquality, 
baseClosed, 
unionElimination, 
equalityElimination, 
independent_functionElimination, 
dependent_functionElimination, 
promote_hyp
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f,g:a:A  fp->  B[a]].  \mforall{}[eq:EqDecider(A)].    (f  \moplus{}  g  \mmember{}  a:A  fp->  B[a])
Date html generated:
2018_05_21-PM-09_20_58
Last ObjectModification:
2018_02_09-AM-10_18_02
Theory : finite!partial!functions
Home
Index