Step
*
of Lemma
fpf-normalize-ap
No Annotations
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ⟶ Type]. ∀[g:x:A fp-> B[x]]. ∀[x:A].
fpf-normalize(eq;g)(x) = g(x) ∈ B[x] supposing ↑x ∈ dom(g)
BY
{ ((UnivCD THENA Auto)
THEN DVar `g'
THEN RepUR ``fpf-normalize fpf-ap fpf-dom fpf-cap
fpf-single fpf-join fpf-empty`` 0⋅) }
1
1. A : Type
2. eq : EqDecider(A)
3. B : A ⟶ Type
4. d : A List
5. g1 : x:{x:A| (x ∈ d)} ⟶ B[x]
6. x : A
7. ↑x ∈ dom(<d, g1>)
⊢ ((snd(reduce(λx,f. <[x / filter(λa.(¬b((eq x a) ∨bff));fst(f))], λa.if (eq x a) ∨bff then g1 x else (snd(f)) a fi >;<[\000C]
, λx.⋅
>;d)))
x)
= (g1 x)
∈ B[x]
Latex:
Latex:
No Annotations
\mforall{}[A:Type]. \mforall{}[eq:EqDecider(A)]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[g:x:A fp-> B[x]]. \mforall{}[x:A].
fpf-normalize(eq;g)(x) = g(x) supposing \muparrow{}x \mmember{} dom(g)
By
Latex:
((UnivCD THENA Auto)
THEN DVar `g'
THEN RepUR ``fpf-normalize fpf-ap fpf-dom fpf-cap
fpf-single fpf-join fpf-empty`` 0\mcdot{})
Home
Index