Nuprl Lemma : fpf-normalize-ap
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ⟶ Type]. ∀[g:x:A fp-> B[x]]. ∀[x:A].
  fpf-normalize(eq;g)(x) = g(x) ∈ B[x] supposing ↑x ∈ dom(g)
Proof
Definitions occuring in Statement : 
fpf-normalize: fpf-normalize(eq;g), 
fpf-ap: f(x), 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
fpf: a:A fp-> B[a], 
fpf-ap: f(x), 
fpf-normalize: fpf-normalize(eq;g), 
pi2: snd(t), 
pi1: fst(t), 
fpf-empty: ⊗, 
fpf-single: x : v, 
fpf-join: f ⊕ g, 
append: as @ bs, 
all: ∀x:A. B[x], 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3], 
fpf-cap: f(x)?z, 
fpf-dom: x ∈ dom(f), 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
implies: P ⇒ Q, 
top: Top, 
less_than': less_than'(a;b), 
squash: ↓T, 
less_than: a < b, 
sq_type: SQType(T), 
it: ⋅, 
nil: [], 
decidable: Dec(P), 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
colength: colength(L), 
cons: [a / b], 
or: P ∨ Q, 
guard: {T}, 
and: P ∧ Q, 
not: ¬A, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
ge: i ≥ j , 
false: False, 
nat: ℕ, 
le: A ≤ B, 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
deq-member: x ∈b L, 
deq: EqDecider(T), 
bool: 𝔹, 
unit: Unit, 
btrue: tt, 
eqof: eqof(d), 
uiff: uiff(P;Q), 
bor: p ∨bq, 
label: ...$L... t, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
fpf_ap_pair_lemma, 
deq_member_cons_lemma, 
deq_member_nil_lemma, 
istype-assert, 
fpf-dom_wf, 
subtype-fpf2, 
top_wf, 
fpf_wf, 
deq_wf, 
istype-universe, 
equal_wf, 
reduce_cons_lemma, 
decidable__equal_int, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
le_wf, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__le, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
itermAdd_wf, 
intformeq_wf, 
spread_cons_lemma, 
product_subtype_list, 
reduce_nil_lemma, 
list-cases, 
list_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
colength_wf_list, 
nat_wf, 
equal-wf-T-base, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
list-subtype, 
full-omega-unsat, 
istype-int, 
istype-less_than, 
set_wf, 
l_member_wf, 
colength-cons-not-zero, 
istype-void, 
istype-le, 
subtract-1-ge-0, 
istype-nat, 
false_wf, 
uiff_transitivity, 
bool_wf, 
assert_wf, 
eqtt_to_assert, 
safe-assert-deq, 
squash_wf, 
true_wf, 
member_wf, 
subtype_rel-equal, 
trivial-equal, 
iff_weakening_equal, 
subtype_rel_self, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
deq-member_wf, 
cons_wf, 
subtype_rel_list, 
assert-deq-member, 
cons_member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
lambdaEquality_alt, 
inhabitedIsType, 
independent_isectElimination, 
lambdaFormation_alt, 
universeIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
functionIsType, 
instantiate, 
universeEquality, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
lambdaFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
imageElimination, 
baseClosed, 
addEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
hypothesis_subsumption, 
promote_hyp, 
unionElimination, 
because_Cache, 
cumulativity, 
axiomSqEquality, 
computeAll, 
independent_pairFormation, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
natural_numberEquality, 
intWeakElimination, 
rename, 
setElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
functionIsTypeImplies, 
setEquality, 
equalityIstype, 
dependent_set_memberEquality_alt, 
baseApply, 
closedConclusion, 
sqequalBase, 
equalityElimination, 
hyp_replacement, 
imageMemberEquality, 
productIsType
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[g:x:A  fp->  B[x]].  \mforall{}[x:A].
    fpf-normalize(eq;g)(x)  =  g(x)  supposing  \muparrow{}x  \mmember{}  dom(g)
Date html generated:
2020_05_20-AM-09_03_30
Last ObjectModification:
2020_01_04-PM-11_11_10
Theory : finite!partial!functions
Home
Index