Step * 2 1 1 of Lemma fpf-rename-ap

.....assertion..... 
1. Type
2. Type
3. A ⟶ Type
4. eqa EqDecider(A)
5. eqc EqDecider(C)
6. A ⟶ C
7. List
8. f1 a:{a:A| (a ∈ d)}  ⟶ B[a]
9. A
10. Inj(A;C;r)
11. ↑a ∈ dom(<d, f1>)
12. hd(filter(λa@0.(eqc (r a@0) (r a));d)) ∈ A
13. (hd(filter(λa@0.(eqc (r a@0) (r a));d)) ∈ d)
14. ↑(eqc (r hd(filter(λa@0.(eqc (r a@0) (r a));d))) (r a))
⊢ hd(filter(λy.(eqc (r y) (r a));d)) a ∈ {a:A| (a ∈ d)} 
BY
xxx((RW assert_pushdownC (-1)) THENA Auto)xxx }

1
1. Type
2. Type
3. A ⟶ Type
4. eqa EqDecider(A)
5. eqc EqDecider(C)
6. A ⟶ C
7. List
8. f1 a:{a:A| (a ∈ d)}  ⟶ B[a]
9. A
10. Inj(A;C;r)
11. ↑a ∈ dom(<d, f1>)
12. hd(filter(λa@0.(eqc (r a@0) (r a));d)) ∈ A
13. (hd(filter(λa@0.(eqc (r a@0) (r a));d)) ∈ d)
14. (r hd(filter(λa@0.(eqc (r a@0) (r a));d))) (r a) ∈ C
⊢ hd(filter(λy.(eqc (r y) (r a));d)) a ∈ {a:A| (a ∈ d)} 


Latex:


Latex:
.....assertion..... 
1.  A  :  Type
2.  C  :  Type
3.  B  :  A  {}\mrightarrow{}  Type
4.  eqa  :  EqDecider(A)
5.  eqc  :  EqDecider(C)
6.  r  :  A  {}\mrightarrow{}  C
7.  d  :  A  List
8.  f1  :  a:\{a:A|  (a  \mmember{}  d)\}    {}\mrightarrow{}  B[a]
9.  a  :  A
10.  Inj(A;C;r)
11.  \muparrow{}a  \mmember{}  dom(<d,  f1>)
12.  hd(filter(\mlambda{}a@0.(eqc  (r  a@0)  (r  a));d))  \mmember{}  A
13.  (hd(filter(\mlambda{}a@0.(eqc  (r  a@0)  (r  a));d))  \mmember{}  d)
14.  \muparrow{}(eqc  (r  hd(filter(\mlambda{}a@0.(eqc  (r  a@0)  (r  a));d)))  (r  a))
\mvdash{}  hd(filter(\mlambda{}y.(eqc  (r  y)  (r  a));d))  =  a


By


Latex:
xxx((RW  assert\_pushdownC  (-1))  THENA  Auto)xxx




Home Index