Step
*
of Lemma
fpf-rename-cap2
∀[A,C,B:Type]. ∀[eqa:EqDecider(A)]. ∀[eqc,eqc':EqDecider(C)]. ∀[r:A ⟶ C]. ∀[f:a:A fp-> B]. ∀[a:A]. ∀[z:B].
rename(r;f)(r a)?z = f(a)?z ∈ B supposing Inj(A;C;r)
BY
{ (((Auto THEN Unfold `fpf-cap` 0 THEN SplitOnConclITE) THENA Try (Complete (Auto)))
THEN Try ((SplitOnConclITE THEN Auto))
THEN Try ((BLemma `fpf-rename-ap2` THEN Auto))) }
1
.....wf.....
1. A : Type
2. C : Type
3. B : Type
4. eqa : EqDecider(A)
5. eqc : EqDecider(C)
6. eqc' : EqDecider(C)
7. r : A ⟶ C
8. f : a:A fp-> B
9. a : A
10. z : B
11. Inj(A;C;r)
⊢ r a ∈ dom(rename(r;f)) ∈ 𝔹
2
.....falsecase.....
1. A : Type
2. C : Type
3. B : Type
4. eqa : EqDecider(A)
5. eqc : EqDecider(C)
6. eqc' : EqDecider(C)
7. r : A ⟶ C
8. f : a:A fp-> B
9. a : A
10. z : B
11. Inj(A;C;r)
12. ↑r a ∈ dom(rename(r;f))
13. ¬↑a ∈ dom(f)
⊢ rename(r;f)(r a) = z ∈ B
3
.....truecase.....
1. A : Type
2. C : Type
3. B : Type
4. eqa : EqDecider(A)
5. eqc : EqDecider(C)
6. eqc' : EqDecider(C)
7. r : A ⟶ C
8. f : a:A fp-> B
9. a : A
10. z : B
11. Inj(A;C;r)
12. ¬↑r a ∈ dom(rename(r;f))
13. ↑a ∈ dom(f)
⊢ z = f(a) ∈ B
Latex:
Latex:
\mforall{}[A,C,B:Type]. \mforall{}[eqa:EqDecider(A)]. \mforall{}[eqc,eqc':EqDecider(C)]. \mforall{}[r:A {}\mrightarrow{} C]. \mforall{}[f:a:A fp-> B]. \mforall{}[a:A].
\mforall{}[z:B].
rename(r;f)(r a)?z = f(a)?z supposing Inj(A;C;r)
By
Latex:
(((Auto THEN Unfold `fpf-cap` 0 THEN SplitOnConclITE) THENA Try (Complete (Auto)))
THEN Try ((SplitOnConclITE THEN Auto))
THEN Try ((BLemma `fpf-rename-ap2` THEN Auto)))
Home
Index