Nuprl Lemma : fpf-rename-cap2
∀[A,C,B:Type]. ∀[eqa:EqDecider(A)]. ∀[eqc,eqc':EqDecider(C)]. ∀[r:A ⟶ C]. ∀[f:a:A fp-> B]. ∀[a:A]. ∀[z:B].
  rename(r;f)(r a)?z = f(a)?z ∈ B supposing Inj(A;C;r)
Proof
Definitions occuring in Statement : 
fpf-rename: rename(r;f), 
fpf-cap: f(x)?z, 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
inject: Inj(A;B;f), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
top: Top, 
fpf-cap: f(x)?z, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
prop: ℙ, 
guard: {T}, 
not: ¬A, 
false: False, 
iff: P ⇐⇒ Q, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
inject: Inj(A;B;f), 
rev_implies: P ⇐ Q
Lemmas referenced : 
fpf-dom_wf, 
subtype-fpf2, 
top_wf, 
istype-void, 
fpf-rename-ap2, 
equal-wf-T-base, 
bool_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
inject_wf, 
fpf_wf, 
deq_wf, 
istype-universe, 
equal_wf, 
fpf-rename_wf, 
fpf-dom_functionality2, 
fpf-rename-dom
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
lambdaEquality_alt, 
inhabitedIsType, 
independent_isectElimination, 
lambdaFormation_alt, 
isect_memberEquality_alt, 
voidElimination, 
because_Cache, 
baseClosed, 
isect_memberFormation_alt, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_functionElimination, 
equalityIstype, 
dependent_functionElimination, 
universeIsType, 
axiomEquality, 
isectIsTypeImplies, 
functionIsType, 
instantiate, 
universeEquality, 
voidEquality, 
isect_memberEquality, 
lambdaFormation, 
functionExtensionality, 
lambdaEquality, 
cumulativity, 
hyp_replacement, 
applyLambdaEquality, 
productEquality, 
independent_pairFormation, 
dependent_pairFormation
Latex:
\mforall{}[A,C,B:Type].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[eqc,eqc':EqDecider(C)].  \mforall{}[r:A  {}\mrightarrow{}  C].  \mforall{}[f:a:A  fp->  B].  \mforall{}[a:A].
\mforall{}[z:B].
    rename(r;f)(r  a)?z  =  f(a)?z  supposing  Inj(A;C;r)
Date html generated:
2019_10_16-AM-11_26_15
Last ObjectModification:
2019_06_25-PM-03_26_11
Theory : finite!partial!functions
Home
Index