Nuprl Lemma : fpf-rename-cap2
∀[A,C,B:Type]. ∀[eqa:EqDecider(A)]. ∀[eqc,eqc':EqDecider(C)]. ∀[r:A ⟶ C]. ∀[f:a:A fp-> B]. ∀[a:A]. ∀[z:B].
rename(r;f)(r a)?z = f(a)?z ∈ B supposing Inj(A;C;r)
Proof
Definitions occuring in Statement :
fpf-rename: rename(r;f)
,
fpf-cap: f(x)?z
,
fpf: a:A fp-> B[a]
,
deq: EqDecider(T)
,
inject: Inj(A;B;f)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
top: Top
,
fpf-cap: f(x)?z
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
prop: ℙ
,
guard: {T}
,
not: ¬A
,
false: False
,
iff: P
⇐⇒ Q
,
exists: ∃x:A. B[x]
,
cand: A c∧ B
,
inject: Inj(A;B;f)
,
rev_implies: P
⇐ Q
Lemmas referenced :
fpf-dom_wf,
subtype-fpf2,
top_wf,
istype-void,
fpf-rename-ap2,
equal-wf-T-base,
bool_wf,
assert_wf,
bnot_wf,
not_wf,
eqtt_to_assert,
uiff_transitivity,
eqff_to_assert,
assert_of_bnot,
inject_wf,
fpf_wf,
deq_wf,
istype-universe,
equal_wf,
fpf-rename_wf,
fpf-dom_functionality2,
fpf-rename-dom
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
equalityTransitivity,
hypothesis,
equalitySymmetry,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
applyEquality,
sqequalRule,
lambdaEquality_alt,
inhabitedIsType,
independent_isectElimination,
lambdaFormation_alt,
isect_memberEquality_alt,
voidElimination,
because_Cache,
baseClosed,
isect_memberFormation_alt,
unionElimination,
equalityElimination,
productElimination,
independent_functionElimination,
equalityIstype,
dependent_functionElimination,
universeIsType,
axiomEquality,
isectIsTypeImplies,
functionIsType,
instantiate,
universeEquality,
voidEquality,
isect_memberEquality,
lambdaFormation,
functionExtensionality,
lambdaEquality,
cumulativity,
hyp_replacement,
applyLambdaEquality,
productEquality,
independent_pairFormation,
dependent_pairFormation
Latex:
\mforall{}[A,C,B:Type]. \mforall{}[eqa:EqDecider(A)]. \mforall{}[eqc,eqc':EqDecider(C)]. \mforall{}[r:A {}\mrightarrow{} C]. \mforall{}[f:a:A fp-> B]. \mforall{}[a:A].
\mforall{}[z:B].
rename(r;f)(r a)?z = f(a)?z supposing Inj(A;C;r)
Date html generated:
2019_10_16-AM-11_26_15
Last ObjectModification:
2019_06_25-PM-03_26_11
Theory : finite!partial!functions
Home
Index