Step
*
of Lemma
fpf-sub-val3
∀[A:Type]. ∀[B,C:A ⟶ Type].
∀eq:EqDecider(A). ∀f:a:A fp-> B[a]. ∀g:a:A fp-> C[a]. ∀x:A.
∀[P:a:A ⟶ B[a] ⟶ ℙ]. ∀[Q:a:A ⟶ C[a] ⟶ ℙ].
((∀x:A. ((C[x] ⊆r B[x]) c∧ (P[x;g(x)]
⇒ Q[x;g(x)])) supposing ((↑x ∈ dom(f)) and (↑x ∈ dom(g))))
⇒ {z != f(x) ==> P[y;z]
⇒ z != g(x) ==> Q[y;z] supposing g ⊆ f})
BY
{ xxx(((Unfolds ``guard fpf-sub fpf-val`` 0
THEN Auto
THEN Try ((DoSubsume THEN Auto))
THEN Repeat ((BackThruSomeHyp THEN Auto))
THEN (InstHyp [⌜x⌝] (-3))⋅)
THENA Auto
)
THEN ExRepD
THEN ThinTrivial)xxx }
1
1. [A] : Type
2. [B] : A ⟶ Type
3. [C] : A ⟶ Type
4. eq : EqDecider(A)
5. f : a:A fp-> B[a]
6. g : a:A fp-> C[a]
7. x : A
8. [P] : a:A ⟶ B[a] ⟶ ℙ
9. [Q] : a:A ⟶ C[a] ⟶ ℙ
10. ∀x:A. ((C[x] ⊆r B[x]) c∧ (P[x;g(x)]
⇒ Q[x;g(x)])) supposing ((↑x ∈ dom(f)) and (↑x ∈ dom(g)))
11. ∀x:A. ((↑x ∈ dom(g))
⇒ ((↑x ∈ dom(f)) c∧ (g(x) = f(x) ∈ B[x])))
12. ↑x ∈ dom(g)
13. ↑x ∈ dom(f)
14. g(x) = f(x) ∈ B[x]
15. P[x;f(x)]
⊢ P[x;g(x)]
Latex:
Latex:
\mforall{}[A:Type]. \mforall{}[B,C:A {}\mrightarrow{} Type].
\mforall{}eq:EqDecider(A). \mforall{}f:a:A fp-> B[a]. \mforall{}g:a:A fp-> C[a]. \mforall{}x:A.
\mforall{}[P:a:A {}\mrightarrow{} B[a] {}\mrightarrow{} \mBbbP{}]. \mforall{}[Q:a:A {}\mrightarrow{} C[a] {}\mrightarrow{} \mBbbP{}].
((\mforall{}x:A
((C[x] \msubseteq{}r B[x]) c\mwedge{} (P[x;g(x)] {}\mRightarrow{} Q[x;g(x)])) supposing ((\muparrow{}x \mmember{} dom(f)) and (\muparrow{}x \mmember{} dom(g))))
{}\mRightarrow{} \{z != f(x) ==> P[y;z] {}\mRightarrow{} z != g(x) ==> Q[y;z] supposing g \msubseteq{} f\})
By
Latex:
xxx(((Unfolds ``guard fpf-sub fpf-val`` 0
THEN Auto
THEN Try ((DoSubsume THEN Auto))
THEN Repeat ((BackThruSomeHyp THEN Auto))
THEN (InstHyp [\mkleeneopen{}x\mkleeneclose{}] (-3))\mcdot{})
THENA Auto
)
THEN ExRepD
THEN ThinTrivial)xxx
Home
Index