Step
*
1
1
1
of Lemma
fpf-vals-nil
.....truecase.....
1. A : Type
2. eq : EqDecider(A)
3. B : A ⟶ Type
4. P : A ⟶ 𝔹
5. d : A List
6. f1 : x:{x:A| (x ∈ d)} ⟶ B[x]
7. a : A
8. ¬↑a ∈ dom(<d, f1>)
9. ∀b:A. (↑(P b)
⇐⇒ b = a ∈ A)
10. u : A
11. v : A List
12. (a = u ∈ A) ∨ (a ∈ v)
13. no_repeats(A;[u / v])
14. filter(P;v) = if a ∈b v then [a] else [] fi ∈ (A List)
15. ↑(P u)
16. (a ∈ v)
⊢ [u; a] = [a] ∈ (A List)
BY
{ xxx((RWO "no_repeats_cons" (-4)) THEN Auto THEN (D (-4)) THEN Subst ⌜u = a ∈ A⌝ 0⋅ THEN Auto)xxx }
Latex:
Latex:
.....truecase.....
1. A : Type
2. eq : EqDecider(A)
3. B : A {}\mrightarrow{} Type
4. P : A {}\mrightarrow{} \mBbbB{}
5. d : A List
6. f1 : x:\{x:A| (x \mmember{} d)\} {}\mrightarrow{} B[x]
7. a : A
8. \mneg{}\muparrow{}a \mmember{} dom(<d, f1>)
9. \mforall{}b:A. (\muparrow{}(P b) \mLeftarrow{}{}\mRightarrow{} b = a)
10. u : A
11. v : A List
12. (a = u) \mvee{} (a \mmember{} v)
13. no\_repeats(A;[u / v])
14. filter(P;v) = if a \mmember{}\msubb{} v then [a] else [] fi
15. \muparrow{}(P u)
16. (a \mmember{} v)
\mvdash{} [u; a] = [a]
By
Latex:
xxx((RWO "no\_repeats\_cons" (-4)) THEN Auto THEN (D (-4)) THEN Subst \mkleeneopen{}u = a\mkleeneclose{} 0\mcdot{} THEN Auto)xxx
Home
Index